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Abstract
It is now well known that the solutions in the Schrödinger equations for
two potentials which are supersymmetric partners are linked by intertwining
relations involving first-order differential operators. In this paper, we explore
the consequence of this linkage for the Green’s functions corresponding to
SUSY partners and the relation between the sums over the inverses of the
eigenvalues for the two potentials. We also establish some relations between
the matrix elements of certain operators evaluated between the eigenstates of
two partner potentials. We show that there can be circumstances where some
matrix elements vanish as a consequence of the presence of supersymmetry.

PACS numbers: 02.30.Gp, 03.65.Fd, 11.30.Pb

1. Introduction

Supersymmetric quantum mechanics (SUSYQM) is the study of the property of Hamiltonians
linked by the algebra of supersymmetry. This possibility was first suggested in a paper by
Witten (1981). It has been shown (Andrianov et al 1984, Sukumar 1985a, 1985b) that the
simplest non-trivial realization of the algebra of supersymmetry leads to the result that a
one-dimensional non-relativistic Hamiltonian can have a partner H̃ whose spectrum is either
identical to that of H or misses the ground state of H or has an additional boundstate below
that of H. In the past 15 years, SUSYQM has been used to study a variety of physical
systems from electrons in magnetic fields (Khare and Maharana 1984) to the Dirac equation
(Sukumar 1985c) for the hydrogen atom and to explaining the relation between deep and
shallow potentials used in the study of problems in nuclear physics (Baye 1987, 1994). The
variety of applications in atomic, nuclear and solidstate physics is now very large.

For one-dimensional Schrödinger equations, it is well known that it is possible to construct
a Green’s function satisfying homogeneous boundary conditions by solving an inhomogeneous
differential equation with a delta function source (Morse and Feshbach 1953, Sukumar 1990).
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There are two possible representations of the Green’s function either in terms of solutions of a
homogeneous differential equation at an energy which is not an eigenenergy or in terms of
a complete set of eigenfunctions of the homogeneous differential equation. The existence of
two representations of G leads to certain integral equalities relating an integral of the Green’s
function to a sum involving spectral parameters. Since SUSYQM establishes a link between
the solutions of two Schrödinger equations connected by the SUSY algebra, this implies a
relation between the corresponding Green’s functions. In section 2 of this paper, we study this
relationship and derive an important relation between the spectral densities of two systems
linked by SUSY algebra.

The intertwining relation between the eigenstates of SUSY partner potentials also has
the consequence that the matrix elements of operators for the two SUSY components are
also linked. In section 3 of the paper, we study the relation between the two sets of matrix
elements. We show that the presence of supersymmetry may lead to the vanishing of certain
matrix elements for one of the two SUSY partner potentials. Two exactly solvable problems
which exhibit this property are discussed in section 4 of the paper. Section 5 contains the
conclusions. Units in which h̄ = 1 and the mass µ = 1

2 are used throughout the paper so that
h̄2

2µ
= 1.

2. Green’s functions for SUSY partners

SUSYQM has established that for every one-dimensional Hamiltonian H given by

H = − d2

dx2
+ V (x) (1)

with eigenstates �n with eigenvalue En there is a partner Hamiltonian H̃

H̃ = − d2

dx2
+ Ṽ (2)

such that their spectral properties are related. The two Hamiltonians defined by

H = A+(E0)A
−(E0) + E0 H̃ = A−(E0)A

+(E0) + E0 (3)

where

A± =
(

± d

dx
+

1

�0
(x)

d

dx
�0(x)

)
(4)

have exactly the same spectrum except that E0 is not an eigenvalue for H̃ . The two potentials
are related by

Ṽ = V − 2
d2

dx2
ln �0 (5)

and the normalized eigenstates of the two hamiltonians are related by

�̃n = (En − E0)
− 1

2 A−�n �n = (En − E0)
− 1

2 A+�̃n. (6)

These intertwining relationships are valid for all boundstates except the ground state of H
corresponding to eigenvalue E0 and may be extended to all states including scattering states
and solutions corresponding to energies which are not eigenvalues.

Green’s functions G and G̃ may be associated with the Schrödinger equations
corresponding to the Hamiltonians H and H̃ which are solutions to(

− ∂2

∂x2
+ V − E

)
G(x, y) = −δ(x − y) (7)
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(
− ∂2

∂x2
+ Ṽ − E

)
G̃(x, y) = −δ(x − y) (8)

where E can take any value except one of the eigenvalues En and in this paper we consider
values of E < E0. G may be constructed from two solutions of the homogeneous differential
equation (

− ∂2

∂x2
+ V − E

)
� = 0 (9)

each of which satisfies one of the boundary conditions satisfied by the eigenstates �n. Let
x0 � x � x1 be the domain. Let �1 satisfy the same boundary condition as �n at x0 and �2

satisfy the same boundary condition as �n at x1. Let

�1(x0) = 0 �2 = �1

∫ x

x1

dz

�2
1

�2(x1) = 0 (10)

so that the Wronskian of �1 and �2 equals 1. In terms of such solutions G may be constructed
in the form

G(x, y) = �1(x)�2(y)θ(y − x) + �1(y)�2(x)θ(x − y) = �1(x<)�2(x>) (11)

where x<(x>) is the smaller (larger) of (x, y) and θ is the unit step function with the property
that θ(z) has value 0 if z � 0 and has value 1 if z � 0. Using the property that the derivative
of a step function is a delta function, it is easy to show that G defined as above satisfies the
inhomogeneous differential equation (equation (7)) for G(x, y). An alternative representation
of G in terms of a complete set of normalized eigenstates of H is

G(x, y) =
∞∑

n=0

�n(x)�n(y)

E − En

+
∫ ∞

0

�k(x)�k(y)

E − k2
ρ(k) dk (12)

where ρ(k) is the spectral density for scattering states. The above equation includes an integral
over continuum states even though the continuum states do not satisfy boundstate boundary
conditions in the asymptotic region. It is well established in the theory of Fourier analysis that
in order to fulfil boundary conditions, it is not necessary that each individual term satisfies the
boundary conditions but that the sum or the integral satisfy the required boundary conditions.
Using the completeness relation

∞∑
n=0

�n(x)�n(y) +
∫ ∞

0
�k(x)�k(y)ρ(k) dk = δ(x − y) (13)

it is easy to show that G represented in this form also satisfies equation (7) which provides a
justification for the inclusion of the integral over continuum states in equation (12). We adopt
the convention that the continuum states can be ortho-normalized over a unit interval . The
existence of two representations of G leads to the integral relation
∫ x1

x0

G(x, x) dx =
∫ x1

x0

�1(x)�2(x) dx =
∞∑

n=0

1

E − En

+ L

∫ ∞

0

ρ(k)

E − k2
dk (14)

when the orthonormality of the eigenstates is used. In equation (14), the parameter L
corresponds to the integration interval x1 − x0. The corresponding relation for the SUSY
partner is then given by
∫ x1

x0

G̃(x, x) dx =
∫ x1

x0

�̃1(x)�̃2(x) dx =
∞∑

n=1

1

E − En

+ L

∫ ∞

0

ρ̃(k)

E − k2
dk (15)
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in which the sum now starts at n = 1 and ρ̃ is the spectral density for the potential Ṽ . For
E < E0, the intertwining relation between the solutions in the two potentials may be written
in the form

�̃1,2 = −b�0
d

dx

�1,2

�0
�1,2 = b

1

�0

d

dx
(�̃1,2�0) b = i(E0 − E)−

1
2 . (16)

These relations imply that

�1�̃2 − �2�̃1 = −b

(
�1

d

dx
�2 − �2

d

dx
�1

)
= −b. (17)

We now consider the function F defined by

F = 1

b
(�1�̃2 + �2�̃1) (18)

in terms of which

�1�̃2 = b

2
(F − 1) �2�̃1 = b

2
(F + 1) (19)

and

GG̃ = �1�2�̃1�̃2 = b2

4
(F 2 − 1). (20)

These equations show that

�̃2

�2
= b

2

F − 1

G

�̃1

�1
= b

2

F + 1

G
. (21)

It can be shown using equations (11) and (16) that

�2
0

d

dx

G(x, x)

�2
0

= −1

b
(�1�̃2 + �2�̃1) = −F. (22)

Furthermore
dF

dx
= 1

b

d

dx

(
�1

�0
�̃2�0 +

�2

�0
�̃1�0

)

= 2

b2
(−�̃1�̃2 + �1�2) = 2

b2
(−G̃ + G) (23)

which is an equation that can be used to study the relation between equations (14) and (15).
The boundary conditions at x = x1 are

Ltx→x1G → 0 G̃ → 0 �2 → 0 �̃2 → 0 �1 �= 0 �̃1 �= 0 (24)

which when taken together with equations (20) and (21) show that

Ltx→x1F
2 − 1 = 0 F(x1) = +1. (25)

Similarly by examining the boundary conditions at x = x0

Ltx→x0G → 0 G̃ → 0 �1 → 0 �̃1 → 0 �2 �= 0 �̃2 �= 0 (26)

and taking into account the conditions in equations (20) and (21), we can infer that

Ltx→x0F
2 − 1 = 0 F(x0) = −1. (27)

The boundary values of F given in equations (25) and (27) when taken together with the
differential equation for F in equation (23) give the relation∫ x1

x0

(G − G̃) dx = b2 = 1

E − E0
. (28)
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By comparing this with the relations in equations (14) and (15), we arrive at the relation

L

∫ ∞

0

ρ(k) − ρ̃(k)

E − k2
dk = 0 (29)

from which we can conclude that since the denominator is negative definite when E < E0 and
the spectral densities are positive semi-definite we must have

ρ(k) = ρ̃(k) (30)

which shows that for scattering energies, the spectral densities for the two SUSY partners
are identical. For confining potentials with no scattering states ρ and ρ̃ both vanish and for
this case the trace relation between the Greens functions in equation (28) is in accord with
equations (14) and (15) when the n = 0 term missing in the second sum is taken into account.
Thus, we have established a relation between the integrals of the equiposition Green’s functions
and sums involving the energy eigenvalues and the spectral densities for the two SUSY partner
potentials.

3. Matrix elements for SUSY partners

The intertwining relations between the eigenfunctions for the two SUSY partners may be
given in a differential form as in equation (6) or by using the Wronskian relation between two
eigensolutions and the differential equation satisfied by the eigenfunctions can be given in an
integral form as

�̃j = −ε
− 1

2
j0 �0

d

dx

(
�j

�0

)
= ε

1
2
j0

1

�0

∫ x

�0�j dy

(31)

�j = ε
− 1

2
j0

1

�0

d

dx
(�̃j�0) = −ε

1
2
j0�0

∫ x �̃j

�0
dy

where εj0 = (Ej − E0). We now consider the matrix elements of an operator A which is a
function of the position x but not of the momentum, i.e [A, x] = 0. For such an operator,
the matrix element taken between the eigenstates of H̃ may be expressed in terms of the
eigenstates of H using the above relations and integration by parts in the form

Ãjk =
∫ x1

x0

�̃jA�̃k dx

= −ε
− 1

2
j0 ε

− 1
2

k0

∫ x1

x0

�j

�0

d

dx

(
A

(
�0

d

dx
�k − �k

d

dx
�0

))
dx (32)

which can be further simplified using the Schrödinger equation satisfied by the eigenstates �k

to the form

Ãjk =
(

εk0

εj0

) 1
2

Ajk − ε
− 1

2
j0 ε

− 1
2

k0

∫ x1

x0

dA

dx
�0�j

d

dx

(
�k

�0

)
dx. (33)

The Hermiticity of A may be used to give an alternate expression for the matrix element by
swapping the indices j and k. By taking a symmetric average of the two expressions it can be
shown that

Ãjk = 1

2
ε

− 1
2

j0 ε
− 1

2
k0

∫ x1

x0

�j�k

(
εj0 + εk0 +

d2

dx2
+ 2

1

�0

d�0

dx

d

dx

)
A dx. (34)

This can be further simplified using

1

�0
[A,H ]�0 = 1

�0
(E0 − H)(A�0) = d2A

dx2
+ 2

dA

dx

1

�0

d

dx
�0 (35)
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which leads to the equivalent expressions

Ãjk = 1

2
ε

− 1
2

j0 ε
− 1

2
k0

∫ x1

x0

�j�k

�0
(Ej + Ek − E0 − H)(A�0) dx (36)

Ãjk = 1

2
ε

− 1
2

j0 ε
− 1

2
k0

(
(εj0 + εk0)Ajk +

∫ x1

x0

�j�k

�0
[A,H ]�0 dx

)
. (37)

It is also clear from equation (36) that for the special case when A = �n/�0 there is a simple
relation between the matrix elements of the two SUSY partners which is given by∫ x1

x0

�̃j

�n

�0
�̃k dx = Ej + Ek − E0 − En

2ε
1
2
j0ε

1
2
k0

∫ x1

x0

�j

�n

�0
�k dx. (38)

The above-derived expression shows that there can be circumstances where the alignment
of energy levels is such that the factor in front of the integral on the right-hand side of the
equation vanishes. This will lead to the possibility that the matrix element for the SUSY
partner vanishes. The vanishing of a matrix element is usually associated with the presence of
some symmetry in the system under consideration or because of some accidental circumstance.
In the case under consideration, the vanishing of the matrix element is a real consequence of
the supersymmetric connection between two potentials. Two examples of such a vanishing of
the matrix elements will be discussed in the next section.

If we consider an operator B which is a function of momentum but not a function of
position, i.e [B,p] = 0, then by using a procedure analogous to that for A it can be established
that

B̃jk =
(

εk0

εj0

) 1
2

Bjk + ε
− 1

2
j0 ε

− 1
2

k0

∫ x1

x0

�j

�0

(
�0B

d�0

dx
− d�0

dx
B�0

)
d

dx

(
�k

�0

)
. (39)

If the operator has definite Hermitian or anti-Hermitian character, then by swapping the indices
j and k it is possible to find alternative expressions which exploit the relationship between
B̃jk and B̃kj .

So far we have discussed the matrix elements of operators which are either pure functions
of x such as A which commute with other functions of x or operators such as B which have only
derivatives present in them. It is possible to extend the discussion to more general operators
using the methods outlined in this section.

4. Examples of vanishing matrix elements

One of the main results of the previous section, namely equation (38), shows that when the
condition Ej + Ek = En + E0 is fulfilled then the matrix element of the function �n/�0 taken
between the eigenstates j and k of H̃ vanishes. This condition for the energies can happen
accidentally for any H for some particular choice of indices j, k and n. In this section, we
show two examples where this condition will be met systematically.

4.1. Simple harmonic oscillator

For V = ω2x2/4, the eigenvalues are En = (n + 1/2)ω and the ground state wavefunction
is �0 ∼ exp(−ωx2/4). The SUSY partner potential from equation (5) is Ṽ = V + ω which
is the oscillator shifted vertically by ω. Since the change in potential is exactly equal to the
spacing of the energy levels in this example, the relation between the eigenstates is �̃n+1 = �n.
If we choose A = V then using the property that the eigenstates are products of Gaussians
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and Hermite polynomials A may be expressed as a linear combination of the eigenstates with
quantum numbers 0 and 2 and hence

A�0 = V �0 = V20�2 + V00�0. (40)

The expansion given above leads to the result that

(E0 − H)A�0 = V20(E0 − E2)�2 = −2ω(V − V00)�0. (41)

By choosing j = k = m + 1 equation (35) can then be used to establish the relation

Ṽm+1,m+1 = Vmm = Vm+1,m+1 − 1

m + 1
(Vm+1,m+1 − V00) (42)

which leads to the expression

Vmm = m

m + 1
Vm+1,m+1 +

1

m + 1
V00. (43)

This equation is clearly satisfied by the well-known oscillator matrix elements

Vmm =
(

m +
1

2

)
ω

2
. (44)

We have shown that since the oscillator has the property that its SUSY partner is also an
oscillator which is just shifted in energy, the relation between the matrix elements of SUSY
partners simply becomes a condition on the matrix elements for the oscillator. If we now
consider the case A = �n/�0 then equation (38) becomes

Ãjk = Aj−1,k−1 = j + k − n

2
√

j
√

k
Ajk (45)

and the matrix element vanishes if j + k = n. A particularly striking example of this arises if
we set j = k = m + 1, n = 2m + 2 which leads to the condition that the harmonic oscillator
wavefunctions must satisfy∫ ∞

−∞
�2

m

�2m+2

�0
dx = 0. (46)

This result is in agreement with a general result involving the products of three Hermite
polynomials (Gradshteyn and Ryzhik 1965) in the form∫ ∞

−∞
e−x2

HkHmHn dx = 2s
√

π

(k + 1)


(s + 1 − k)


(m + 1)


(s + 1 − m)


(n + 1)


(s + 1 − n)
(47)

s = m + n + k = even.

The vanishing of the integral given in equation (46) cannot be explained from any obvious
spatial symmetry of the wavefunctions, but is a consequence of an underlying supersymmetry.

4.2. Particle in a box

For a particle confined inside a box with an infinite potential wall at |x| = π/2, the eigenvalues
are En = (n + 1)2. The ground state wavefunction is �0 ∼ cos x. The SUSY partner is
Ṽ = 2 sec2 x. By eliminating one state at a time, it is possible to produce a sequence of
potentials Vm = m(m + 1) sec2 x such that two potentials with adjacent values of m are SUSY
partners. The lowest member of this sec2 sequence is V1 = Ṽ . The eigenstates of any member
of this sequence may be related to the eigenstates of the particle in a box through a chain of
intertwining relations arising from equation (6). The condition for the vanishing of a matrix
element arising from equation (38) in this example becomes

(j + 1)2 + (k + 1)2 = 1 + (n + 1)2. (48)
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There are infinitely many sets of values of (j, k, n) for which this condition can be met. Some
examples are (4, 4, 6), (3, 6, 7), (7, 8, 11) and (10, 12, 16). Each of these sets of values will
lead to the vanishing of an integral. For example, the set j = 4, k = 4, n = 6 corresponds to
the eigenfunctions

�̃4 ∼ − cos x
d

dx

cos 5x

cos x
�6 ∼ cos 7x. (49)

Use of these eigenfunctions in equation (36) leads to
∫ π

2

− π
2

(5 sin 5x − cos 5x tan x)2 cos 7x

cos x
dx = 0. (50)

The vanishing of this integral can be explicitly verified by a long calculation. Again the
vanishing of this integral cannot be explained by an easily identifiable geometrical symmetry.
The vanishing of this integral is a consequence of a supersymmetric link between the
eigenfunctions. The argument used here shows that there are many sets of values of (j, k, n)

for which some matrix elements vanish and this feature has its dynamical origin in the presence
of an underlying supersymmetry.

5. Conclusions

In this paper, it has been shown that the intertwining relationship between the eigenfunctions of
two SUSY partner Hamiltonians has a number of significant consequences. It has been shown
that the Green’s functions for the two systems are related. The trace formulae for the Green’s
functions which link the spectral parameters for the SUSY partners have been constructed and
it has been proved that the spectral density for scattering states is the same. For the case of the
confining potentials which do not have any scattering states, the trace formulae are in accord
with the sums over the inverses of the eigenvalues when the missing of the ground state of one
of the SUSY partners is taken into account.

It has been shown that the intertwining relationships also imply that there are
circumstances when the matrix elements of some operators taken between the eigenstates
of one of the SUSY partners will vanish while the corresponding matrix element for the
other partner Hamiltonian is non-vanishing. This feature is a consequence of the underlying
supersymmetry linking the two Hamiltonians. In the case of the simple harmonic oscillator,
certain integrals involving the eigenfunctions are shown to vanish identically. This is associated
with the feature that the supersymmetric partner to the oscillator is also the oscillator but only
shifted in energy. In the case of a free particle confined between infinite walls, it has been
shown that some matrix elements vanish when the energy levels involved satisfy a simple
condition. These are two examples of exactly solvable systems in which the vanishing of
the matrix element can be exhibited explicitly. However, the results derived in this paper are
quite general and show that there are still many surprising features lurking in supersymmetric
quantum mechanics.
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